NI	0.3395 (8)	0.5473 (3)	0.1086(5)	3.5 (3)
N2	0.5122 (8)	0.4933 (4)	0.2972 (5)	4.3 (3)
N3	0.5748 (8)	0.6454 (3)	0.0969 (5)	3.4 (3)
N4	0.7448 (8)	0.5933 (3)	0.2768 (5)	3.4 (3)
C1	0.3367 (9)	0.5765 (4)	0.0144 (6)	3.4 (3)
C2	0.6530(11)	0.4792 (5)	0.3552 (6)	4.5 (4)
C3	0.4677 (10)	0.6365 (4)	-0.0017 (6)	3.5 (3)
C4	0.7927 (10)	0.5344 (5)	0.3554 (6)	4.4 (4)
C5	0.2096 (11)	0.5487 (6)	-0.0712 (7)	5.2 (5)
C6	0.6754 (13)	0.4069 (6)	0.4134 (9)	6.3 (5)
C7	0.3715 (13)	0.7070(5)	-0.0354 (8)	5.3 (4)
C10	0.8162 (15)	0.5732 (7)	0.4687 (7)	6.9 (6)
C11	0.7413 (11)	0.6850 (5)	0.0792 (7)	4.6 (4)
C12	0.8977 (10)	0.6356 (5)	0.2408 (7)	4.4 (4)
C13	0.8403 (10)	0.7041 (5)	0.1821 (7)	4.1 (4)
C14	0.9989 (12)	0.7578 (5)	0.1671 (9)	5.6 (5)
C15	0.7507 (12)	0.7614 (5)	0.2547 (8)	5.0 (4)
C16	0.9218 (14)	0.8081 (7)	0.2519 (12)	8.1 (7)

Table 2. Selected geometric parameters (Å, °)

Tc—O3	1.664 (5)	C1—C3	1.479 (11)
Tc—N1	2.075 (6)	C1—C5	1.504 (10)
Tc—N2	2.087 (7)	C2—C4	1.446 (13)
Tc—N3	1.917 (6)	C2—C6	1.512 (12)
Tc—N4	1.917 (6)	C3—C7	1.528 (11)
01—N1	1.353 (8)	C4—C10	1.588 (13)
O2N2	1.330 (9)	C11—C13	1.511 (12)
N1-C1	1.290 (10)	C12—C13	1.507 (12)
N2—C2	1.290 (10)	C13-C14	1.545 (12)
N3—C3	1.465 (9)	C13—C15	1.539 (12)
N3-C11	1.452 (10)	C14-C16	1.518 (16)
N4C4	1.493 (10)	C15-C16	1.531 (14)
N4—C12	1.449 (10)		
O3—Tc—N1	109.4 (2)	N1—C1—C3	115.2 (6)
O3—Tc—N2	108.3 (3)	C3-C1-C5	124.1 (7)
O3-Tc-N3	111.3 (3)	N2-C2-C4	116.0(7)
O3—Tc—N4	111.3 (3)	N2-C2-C6	121.8 (8)
N1—Tc—N2	86.1 (3)	C4—C2—C6	122.1 (7)
N1—Tc—N3	77.7 (2)	N3-C3-C1	108.6 (6)
N1—Tc—N4	139.2 (2)	N3—C3—C7	112.6(7)
N2—Tc—N3	140.2 (3)	C1—C3—C7	110.7 (6)
N2—Tc—N4	78.2 (3)	N4—C4—C2	109.6 (6)
N3—Tc—N4	90.8 (3)	N4-C4-C10	106.6 (7)
Tc—N1—O1	122.9 (4)	C2-C4-C10	112.4 (7)
Tc-NI-CI	117.5 (5)	N3-C11-C13	113.1 (7)
01—N1—C1	119.2 (6)	N4C12C13	112.0(6)
Tc—N2—O2	123.0 (5)	C11—C13—C12	110.7 (7)
TcN2C2	116.7 (6)	C11—C13—C14	113.9 (7)
O2N2C2	120.2 (7)	C11—C13—C15	116.5 (7)
Tc—N3—C3	119.3 (5)	C12C13C14	111.9(7)
Tc-N3-C11	127.8 (5)	C12—C13—C15	113.5 (7)
C3—N3—C11	112.5 (6)	C14—C13—C15	88.7 (6)
Tc-N4-C4	117.3 (5)	C13—C14—C16	90.2 (7)
Tc—N4—C12	128.4 (5)	C13-C15-C16	89.9 (7)
C4—N4—C12	113.9 (6)	C14-C16-C15	90.0 (7)
N1-C1-C5	120.7 (7)		

The structure was solved by Patterson methods and Fourier synthesis, and refined by full-matrix least squares. H atoms were located by a difference Fourier method and refined isotropically.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: NRCVAX (Gabe, Le Page, Charland, Lee & White, 1989). Program(s) used to solve structure: NRCVAX. Program(s) used to refine structure: NRCVAX. Molecular graphics: SHELXTL-Plus (Sheldrick, 1986). Software used to prepare material for publication: NRCVAX.

The authors thank the National Science Council for support under grants NSC 84-2112-M007-019 and NSC 84-2113-M007-027. They are also indebted to Ms Shu-Fang Tung for collecting the X-ray diffraction data.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and least-squares-planes data have been deposited with the IUCr (Reference: KH1061). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bacciottini, L., Lunghi, F., Pupi, A., Bonino, C., Formiconi, A. R., De Cristofaro, M. T. R., Petti, A. R. M. & Meldolesi, U. (1990). *Eur. J. Nucl. Med.* 17, 242–247.
- Colombo, F., Lunghi, F., Deleide, G., Matarrese, M., Bonino, C., Jang, L. K., Belletire, J., Fazio, F. & Deutsch, E. (1989). J. Nucl. Med. 30, 742. (Abstract.)
- Deutsch, E. (1990). US Patent No. 4 895 960.
- Enraf-Nonius (1989). CAD-4 Software. Fortran Version 5. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K., Troutner, D. E., Schlemper, E. O., Murmann, R. K. & Hoppe, M. L. (1984). Acta Cryst. C40, 1544-1546.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Hung, J. C., Corlija, M., Volkert, W. A. & Holmes, R. A. (1988). J. Nucl. Med. 29, 1568-1576.
- Jurisson, S., Aston, K., Fair, C. K., Schlemper, E. O., Sharp, P. R. & Troutner, D. E. (1987). *Inorg. Chem.* 26, 3576–3582.
- Jurisson, S., Schlemper, E. O., Troutner, D. E., Canning, L. R., Nowotnik, D. P. & Neirinckx, R. D. (1986). *Inorg. Chem.* 25, 543– 549.
- Neirinckx, R. D., Canning, L. R., Piper, I. M., Nowotnik, D. P., Pickett, R. D., Holmes, R. A., Volkert, W. A., Forster, A. M., Weisner, P. S., Marriott, J. A. & Chaplin, S. B. (1987). *J. Nucl. Med.* 28, 191–202.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1986). SHELXTL-Plus. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
- Troutner, D. E., Volkert, W. A., Hoffman, T. J. & Holmes, R. A. (1984). Int. J. Appl. Radiat. Isotop. 5, 467–470.
- Volkert, W. A., Hoffman, T. J., Seger, R. M., Troutner, D. E. & Holmes, R. A. (1984). Eur. J. Nucl. Med. 9, 511–516.

Acta Cryst. (1996). C52, 840-842

$[Fe_2(CO)_4(PMe_3)_4(\mu-H)(\mu-SiCl_2)]-$ [Fe(CO)_4(SiCl_3)]

RICHARD S. SIMONS AND CLAIRE A. TESSIER

Department of Chemistry, University of Akron, Akron, Ohio 44325-3601, USA

(Received 10 November 1994; accepted 9 October 1995)

Abstract

The structure of tetracarbonyl- μ -(dichlorosilylene)- μ -hydrido-tetrakis(trimethylphosphine)diiron(1+) tetracarbonyl(trichlorosilyl)ferrate(1-), has been determined at 119 K. The cation has an Fe—Fe distance of 2.947 (2) Å and an average Fe—Si distance of 2.249 (3) Å. A bridging hydride was located from a difference map with Fe—H distances of 1.77 and 1.63 Å. The anion has an Fe—Si distance of 2.238 (3) Å.

Comment

In an attempt to find a one-step synthesis of phosphinesubstituted iron-silicon complexes, the reaction of Fe(CO)₅, HSiCl₃ and PMe₃ in a 1:1:1 ratio was studied. Combination of these reagents resulted in a vigorous redistribution reaction and the known compound SiCl₄(PMe₃)₂ (Beattie & Ozin, 1969) precipitated. The mixture, which presumably contained the redistribution product SiH₂Cl₂, was photolysized. After removal of SiCl₄(PMe₃)₂ by filtration, the title complex, (I), was isolated from the solution. The formation of (I) can be viewed as the protonation of the neutral complex Fe₂(CO)₄(PMe₃)₄(μ_2 -SiCl₂) by the strong Brönsted acid HFe(CO)₄(SiCl₃) (Jetz & Graham, 1971). We report herein the crystal structure of (I).

$$\begin{bmatrix} M_{e_3P} \stackrel{CO \ Cl_2 \ CO}{\underset{CO}{} I \stackrel{M_{e_3P}}{} I \stackrel{CO \ Cl_3 \ Cl_3 \ Cl_3 \ Cl_4 \ Cl_4 \ Cl_5 \ Cl_5 \ Cl_5 \ Cl_6 \ C$$

Characterization of (I) by spectral methods proved difficult and an X-ray structure determination was undertaken to establish its identity. The crystal structure of the anion of (I) has been obtained previously (Olie, Oskam & Jansen, 1975) and our results are within experimental error of those of the previous determination. Fig. 1 shows a displacement ellipsoid plot of the cation of (1).

The cation contains two Fe atoms which are doubly bridged by an H atom and an $SiCl_2$ ligand. The two Fe atoms and the Si atom define a plane from which

Fig. 1. Structure of the cation of $[Fe_2(CO)_4(PMe_3)_4(\mu_2-H)(\mu_2-SiCl_2)][Fe(CO)_4(SiCl_3)]$. The displacement ellipsoids are drawn at the 50% probability level. All H atoms except the bridging hydride have been omitted for clarity.

H(1) deviates by only 0.085 Å. The distorted octahedral geometry at each Fe atom is completed by two PMe₃ and two carbonyl ligands. The carbonyl ligands have an average C=O bond distance of 1.14(2) Å and the PMe₃ ligands have an average P—C bond distance of 1.81(1)Å. The Fe—Fe distance [2.947(2)Å] of the cation of (I) is long when compared with other Fe-Fe distances. Typical Fe—Fe distances in complexes bridged by one silvl unit are 2.614(1)-2.626(2) Å (Ogino, Tobita & Kawano, 1991, 1992), but distances as long as 2.721 (2) Å have been reported (Ogino et al., 1994). Supported μ_2 -bridging hydride ligands have been found to exert both lengthening and shortening influences on metal-metal bond distances (Churchill, DeBoer & Rotella, 1976). The long Fe-Fe distance for the cation of (I) is most probably the result of complexation of a proton by the Fe-Fe bond of the neutral complex $Fe_2(CO)_4(PMe_3)_4(\mu_2-SiCl_2)$. Even in neutral complexes, a similar description of the supported bridging metal hydrides has been given (Mingos & Wales, 1990; Shriver, Kaesz & Adams, 1990). The bridging hydride was located from the difference Fourier map at distances of 1.77 and 1.63 Å from Fe(1) and Fe(2), respectively. Asymmetric bridging hydrides between two metal atoms have been described before (Bau, Teller, Kirtley & Koetzle, 1979).

Experimental

Crystals of the title compound suitable for X-ray analysis were obtained from a saturated hexane solution.

Crystal data

[Fe ₂ H(SiCl ₂)(CO) ₄ -	Mo $K\alpha$ radiation
$(C_3H_9P)_4$][Fe(SiCl ₃)-	$\lambda = 0.71073 \text{ Å}$
(CO) ₄]	Cell parameters from 25
$M_r = 930.4$	reflections
Monoclinic	$\theta = 10 - 15^{\circ}$
P21	$\mu = 1.733 \text{ mm}^{-1}$
a = 8.411 (2) Å	T = 119 K
b = 14.454(3) Å	Plate
c = 15.800(3) Å	$0.4 \times 0.2 \times 0.15$ mm
$\beta = 91.32(3)^{\circ}$	Red
V = 1920.3 (7) Å ³	
Z = 2	
$D_r = 1.609 \text{ Mg m}^{-3}$	

Data collection

Syntex $P2_1$ diffractometer R_{in} ω scans θ_{max} Absorption correction: $h = \psi$ scans (North, Phillips k = & Matthews, 1968) $l = T_{min} = 0.242$, $T_{max} = 3$ s 1.000 1299 measured reflections 3524 independent reflections in

2972 observed reflections

 $[F > 4\sigma(F)]$

 $R_{int} = 0.0145$ $\theta_{max} = 25^{\circ}$ $h = -9 \rightarrow 1$ $k = 0 \rightarrow 17$ $l = -18 \rightarrow 18$ 3 standard reflections monitored every 97 reflections intensity decay: 0.86%

$[Fe_2H(SiCl_2)(CO)_4(C_3H_9P)_4][Fe(SiCl_3)(CO)_4]$

Refinement

		Fe(2) - Fe(1) - C(1)	89.0
Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.001$	P(1) - Fe(1) - C(1)	93.3
R = 0.0398	$\Delta \rho_{\rm max} = 0.52 \ {\rm e} \ {\rm \AA}^{-3}$	P(2) = Fe(1) = C(1)	85.9
m = 0.0270	$\Delta_{0} = -0.50 \text{ e}^{-3}$	Si(1)— $Fe(1)$ — $C(1)$	94.2
WR = 0.0432	$\Delta p_{\rm min} = -0.50 \ {\rm C} \ {\rm A}$	Fe(2) - Fe(1) - C(2)	95.6
S = 1.03	Extinction correction: none	P(1) - Fe(1) - C(2)	86.2
2972 reflections	Atomic scattering factors	P(2) - Fc(1) - C(2)	89.7
380 narameters	from International Tables	Si(1) - Fe(1) - C(2)	88.0
	for V ray Crystallography	C(1) - Fe(1) - C(2)	175.3
H atoms: see below	Jor X-ray Crystanography	Fe(1) - Fe(2) - P(3)	146.3
$w = 1/[\sigma^2(F) + 0.0008F^2]$	(1974, Vol. IV)	Fe(1) - Fe(2) - P(4)	114.1
		P(3) - Fe(2) - P(4)	99.7

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$

	r	v	z	U_{ea}
Fe(1)	0.33209 (12)	0.89647	0.56639 (7)	0.0132 (3)
Fe(2)	0.37144 (13)	0.85382(11)	0.74807 (6)	0.0156 (3)
Fe(3)	0.93271 (14)	0.29936 (11)	0.84637(7)	0.0231 (4)
P(1)	0.1493 (2)	1.01008 (16)	0.54853 (13)	0.0173 (6)
P(2)	0.4221 (2)	0.86635 (16)	0.43725 (12)	0.0174 (6)
P(3)	0.4589(3)	0.75213 (17)	0.84443(14)	0.0256 (7)
P(4)	0.2824 (3)	0.96590(17)	0.83475 (13)	0.0227 (6)
Cl(1)	0.3885 (3)	0.64469 (15)	0.60299(13)	0.0243 (6)
Cl(2)	0.7109(2)	0.76178 (17)	0.62933 (13)	0.0257 (6)
Cl(3)	1.1359 (3)	0.4963 (2)	0.75624 (16)	0.0512 (9)
Cl(4)	1.3649 (3)	0.33440 (19)	0.83313 (17)	0.0420 (8)
Cl(5)	1.1842 (3)	0.47446 (19)	0.95710(14)	0.0372 (7)
Si(1)	0.4629 (2)	0.78063 (17)	0.63383 (13)	0.0160 (6)
Si(2)	1.1420(3)	0.39491 (19)	0.84892 (14)	0.0229 (7)
O(1)	0.5988(7)	1.0268 (4)	0.5842 (4)	0.0262 (19)
O(2)	0.0679 (7)	0.7686 (5)	0.5330 (4)	0.030(2)
O(3)	0.6781 (7)	0.9489 (5)	0.7622 (4)	0.034 (2)
O(4)	0.0713(7)	0.7491 (5)	0.7429 (4)	0.037 (2)
O(5)	0.7474 (8)	0.4656 (6)	0.8795 (5)	0.053 (3)
O(6)	1.0238 (8)	0.2694 (6)	0.6712 (4)	0.047 (3)
O(7)	1.0826 (8)	0.1927 (5)	0.9834 (4)	0.050(3)
O(8)	0.6647 (8)	0.1693 (6)	0.8371 (5)	0.055 (3)
C(1)	0.4940 (9)	0.9761 (6)	().5760 (5)	0.018 (2)
C(2)	0.1698 (10)	0.8170 (6)	0.5474 (5)	0.019 (2)
C(3)	0.5591 (9)	0.9113 (6)	0.7549 (5)	0.019 (2)
C(4)	0.1887 (10)	0.7896 (6)	0.7442 (5)	0.024 (3)
C(5)	-0.0138 (9)	1.0035(7)	0.6219 (5)	0.029 (3)
C(6)	0.0353 (10)	1.0173 (7)	0.4498 (5)	0.030 (3)
C(7)	0.2255 (9)	1.1263 (6)	0.5585 (5)	0.021 (2)
C(8)	0.3533 (12)	0.9395 (6)	0.3503 (5)	0.031 (3)
C(9)	0.6357 (9)	0.8754 (6)	0.4271 (5)	0.026 (3)
C(10)	0.3817 (10)	0.7515 (6)	0.3959(5)	0.026 (3)
C(11)	0.6447 (13)	0.7803 (7)	0.8972 (7)	0.056 (4)
C(12)	0.3258 (14)	0.7308 (7)	0.9294 (7)	0.052 (4)
C(13)	0.4999 (14)	0.6353 (6)	0.8117 (6)	0.042 (3)
C(14)	0.2806 (11)	1.0815 (6)	0.7904 (6)	0.034 (3)
C(15)	0.3981 (13)	0.9887 (8)	0.9312(5)	0.044 (4)
C(16)	0.0813 (11)	0.9541 (8)	0.8748(6)	0.045 (4)
C(17)	0.8182 (10)	0.3993 (7)	0.8673 (5)	0.031 (3)
C(18)	0.9904 (9)	0.2810(7)	0.7395 (6)	0.029 (3)
C(19)	1.0256 (10)	0.2368 (6)	0.9307 (5)	0.029 (3)
C(20)	0.7673 (11)	0.2212(7)	0.8407 (6)	0.032 (3)

Table 2. Selected geometric parameters (Å, °)

2.947 (2)	Fe(2)—P(4)	2.262 (3)
2.265 (3)	Fe(2)—Si(1)	2.242 (3)
2.235 (3)	Fe(2)—C(3)	1.786 (8)
2.255 (3)	Fe(2)—C(4)	1.795 (9)
1.789 (8)	Cl(1)—Si(1)	2.115 (4)
1.800 (9)	Cl(2)—Si(1)	2.107 (3)
2.228 (3)		
109.5(1)	Fe(1) - P(1) - C(5)	113.7 (3)
144.7(1)	Fe(1) - P(1) - C(6)	119.5 (3)
105.6(1)	P(4) - Fe(2) - C(4)	95.6 (3)
48.9(1)	Fe(1) - P(1) - C(7)	115.4 (3)
156.9 (1)	Si(1)—Fe(2)—C(4)	92.1 (3)
	2.947 (2) 2.265 (3) 2.235 (3) 2.255 (3) 1.789 (8) 1.800 (9) 2.228 (3) 109.5 (1) 144.7 (1) 105.6 (1) 48.9 (1) 156.9 (1)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

D(2) E (1) C(1)	0(7(1)	$\mathbf{D}(2) = \mathbf{E}_{0}(2) - \mathbf{C}(4)$	872(4)
P(2) = Fe(1) = Si(1)	90.7(1)	F(3) = F(2) = C(4)	07.5(4)
Fe(2) - Fe(1) - C(1)	89.0 (3)	Fe(1) = P(2) = C(8)	118.1 (3)
P(1) - Fe(1) - C(1)	93.3 (3)	Fe(1) - P(2) - C(9)	115.1 (3)
P(2) - Fe(1) - C(1)	85.9 (3)	Fc(2)-C(4)-O(4)	178.6 (9)
Si(1) - Fe(1) - C(1)	94.2 (3)	Fe(1) - P(2) - C(10)	116.1 (3)
Fe(2) - Fe(1) - C(2)	95.6 (3)	Fc(2) - P(3) - C(11)	115.8 (4)
P(1) - Fe(1) - C(2)	86.2 (3)	Fe(2) - P(3) - C(12)	114.9 (4)
P(2) - Fc(1) - C(2)	89.7 (3)	Fe(2) - P(3) - C(13)	118.8 (3)
Si(1) - Fe(1) - C(2)	88.0 (3)	Fe(2) = P(4) = C(14)	115.3 (3)
C(1) - Fe(1) - C(2)	175.3 (4)	Fe(2)—P(4)—C(15)	117.3 (4)
Fe(1) - Fe(2) - P(3)	146.3 (1)	Fe(2) - P(4) - C(16)	117.9 (4)
Fe(1) - Fe(2) - P(4)	114.1(1)	Fe(1) - Si(1) - Fc(2)	81.9(1)
P(3) - Fe(2) - P(4)	99.7 (1)	Fe(1) - Si(1) - Cl(1)	116.5 (2)
Fc(1)— $Fe(2)$ — $Si(1)$	49.2(1)	Fe(2)— $Si(1)$ — $Cl(1)$	121.2(1)
P(3) - Fe(2) - Si(1)	97.3 (1)	Fe(1)—Si(1)—Cl(2)	123.6(1)
P(4) - Fe(2) - Si(1)	161.7 (1)	Fe(2)—Si(1)—Cl(2)	116.5(1)
Fe(1) - Fe(2) - C(3)	92.4 (3)	Cl(1) - Si(1) - Cl(2)	99.2 (2)
P(3) - Fe(2) - C(3)	89.3 (3)	Fc(1)	178.4 (7)
P(4) - Fe(2) - C(3)	86.1 (3)	Fc(1) - C(2) - O(2)	177.7 (8)
Si(1) - Fe(2) - C(3)	87.2 (3)	Fe(2) - C(3) - O(3)	177.8 (7)
Fe(1)—Fc(2)—C(4)	89.8 (3)		

H(1) was refined with isotropic U; all remaining H atoms were refined using a riding model with fixed isotropic U values. For the absolute structure refinement with inverted coordinates, R= 0.0421, wR = 0.0475 and S = 0.60. All calculations were performed using SHELXTL-Plus (Sheldrick, 1991).

We thank Wiley Youngs for useful discussions and James Howe (deceased) for library research. This work was supported by the National Science Foundation (CHE-9309160).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1051). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bau, R., Teller, R. G., Kirtley, S. W. & Koetzle, T. E. (1979). Acc. Chem. Res. 12, 176-183.
- Beattie, I. R. & Ozin, G. A. (1969). Inorg. Phys. Theor. A, pp. 2267-2269.
- Churchill, M. R., DeBoer, B. G. & Rotella, F. J. (1976). Inorg. Chem. 15, 1843-1853.
- Jetz, W. & Graham, W. A. G. (1971). Inorg. Chem. 10, 1647-1653.
- Mingos, D. M. P. & Wales, D. J. (1990). Introduction to Cluster Chemistry, pp. 49-53. Englewood Cliffs, New Jersey: Prentice Hall. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst.
- A24, 351-359. Ogino, H., Tobita, H. & Kawano, Y. (1991). Angew. Chem. Int. Ed.
- Engl. 30, 843-844.
- Ogino, H., Tobita, H. & Kawano, Y. (1992). J. Organomet. Chem. 428, 125-143.
- Ogino, H., Tobita, H., Shinagawa, I., Ohnuki, S., Abe, M. & Izumi, H. (1994). J. Organomet. Chem. 473, 187-193.
- Olie, K., Oskam, A. & Jansen, P. R. (1975). Cryst. Struct. Commun. 4, 667-671.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Shriver, D. F., Kaesz, H. D. & Adams, R. D. (1990). The Chemistry of Metal Cluster Complexes, pp. 22-27. New York: VCH.